Refine Your Search

Topic

Author

Search Results

Technical Paper

Effects of Aromatics Content and 90% Distillation Temperature of Diesel Fuels on Flame Temperature and Soot Formation

2001-05-07
2001-01-1940
In this study, the effects of fuel properties, aromatics content and 90% distillation temperature T90, on flame temperature and soot formation were studied using a rapid compression machine (RCM). Aromatics content and T90 distillation temperature were parameters isolated from influence of each other, and from cetane number. A fuel spray was injected in the RCM combustion chamber by a single nozzle hole. The ignition and combustion processes of diesel spray were observed by a high-speed direct photography. Flame temperature and KL factor (which indicates the soot concentration), were analyzed by the two-color method. The rate of heat release was analyzed from indicated diagrams. The fuels with aromatics content showed higher flame temperature. The fuel with highest T90 distillation temperature showed highest flame temperature.
Technical Paper

Effect of Nozzle Diameter and EGR Ratio on the Flame Temperature and Soot Formation for Various Fuels

2001-05-07
2001-01-1939
In this study, effects of nozzle hole diameter and EGR ratio on flame temperature (indication of NO formation) and KL value (indication of soot formation) were investigated. Combustion of a single diesel fuel spray in the cylinder of a rapid compression machine (RCM) was analyzed. Three nozzles with different hole diameter were used corresponding to present, near term and long term heavy duty diesel engine specifications. EGR was simulated through 2%vol. CO2 addition to the inlet air and by increase of in-cylinder surrounding gas temperature. Various types of fuels were used in this. The ignition and combustion processes of diesel fuel spray were observed by a high-speed direct photography and by indicated pressure diagrams. Flame temperature and KL factor were analyzed by a two-color method. With larger nozzle hole diameters there are larger high temperature areas. With smaller nozzle hole diameters there is more soot formed. Introduction of 2% vol.
Technical Paper

Measurement of Instantaneous Heat Flux Flowing Into Metallic and Ceramic Combustion Chamber Walls

2000-06-19
2000-01-1815
Accurate measurements of combustion gas temperature and the coefficient of heat transfer between the gas and the combustion chamber wall of internal combustion engine in cyclic operations are difficult at present. Hence the only method available for determination of states of thermal load and heat loss to the combustion chamber wall in a cycle is to measure the instantaneous temperature on the combustion chamber wall surface accurately and precisely using proper thin-film thermocouples, then to calculate the instantanenous heat flux flowing into the wall surface by means of numerical analysis. However, it is necessary to pay adequate attention to the effects of thermophysical properties of the thermocouple materials on the measured values, since any thermocouple consists of several kinds of materials which are different from those of portions to be measured.
Technical Paper

Auto-Ignition and Combustion of n-Butane and DME/Air Mixtures in a Homogeneous Charge Compression Ignition Engine

2000-06-19
2000-01-1832
Auto-ignition, which is observed in homogeneous and premixed charge compression ignition engines, allows expansion of the lean flammability limit of engine operation and realization of stable ignition and combustion over a range of ultra-lean conditions, where NOx emissions are very low. In this study, the basic combustion mechanism of auto-ignition and combustion was studied with initial mixture temperatures and compression speeds for n-butane and dimethyl ether. A single-mode type heat release process was observed with n-butane in the homogeneous charge compression ignition test engine.
Technical Paper

Two–Dimensional Imaging of Formaldehyde Formed During the Ignition Process of a Diesel Fuel Spray

2000-03-06
2000-01-0236
The time of, and location where ignition first occurs in a diesel fuel spray were investigated in a rapid compression machine (RCM) using the two–dimensional techniques of silicone oil particle scattering imaging (SSI), and the planar laser induced fluorescence (LIF) of formaldehyde. Formaldehyde has been hypothesized to be one of the stable intermediate species marking the start of oxidation reactions in a transient spray under compression ignition conditions. In this study, the LIF images of the formaldehyde formed in a diesel fuel spray during ignition process have been successfully obtained for the first time by exciting formaldehyde with the 3rd harmonic of the Nd:YAG laser. SSI images of the vaporizing spray, and the LIF images of formaldehyde were obtained together with the corresponding time record of combustion chamber pressures at initial ambient temperatures ranging from 580 K to 790 K.
Technical Paper

A Study of Autoignition and Combustion in Two-Stroke ATAC Engine - Compression Ignition Characteristics of Low Carbon Alternative Fuels

1999-09-28
1999-01-3274
ATAC (Active Thermo-Atmosphere Combustion) is autoignition combustion in two stroke engines, which occurs by diluting trapped Fuel-Air mixture with residual gas to maintain a high temperature at low load operation. In this study, two-stroke ATAC engine testing was carried out to obtain fundamental knowledge for controlling the autoignition and combustion characteristics in this premixed charge compression-ignition combustion engine. The influences of delivery ratio, equivalence ratio and enginespeed (i.e. compression speed) on autoignition timing, autoignition temperature and combustion duration were investigated. It was found that the ATAC autoignition temperature and combustion duration did not depend on the delivery ratio and equivalence ratio, but were determined by the individual fuel characteristics. Increasing the compression speed reduced the ATAC autoignition temperature a little.
Technical Paper

Alternative Fuels and Homogeneous Charge Compression Ignition Combustion Technology

1997-10-27
978449
Homogeneous charge compression ignition (HCCI) combustion requires high EGR rate and high intake temperature. HCCI combustion has not yet been made to operate at conditions other than low speed and low load in a four-stroke engine. Two stroke engine, however, have produced reasonable power in the HCCI combustion or active thermo-atmosphere combustion (ATAC) mode. In this paper, the nature of ATAC is discussed by spectroscopic observation to determine why the ATAC (under favorable condition) produces very low cyclic irregularity and low NO emission. ATAC low heat rejection engine and ATAC with alternative fuels are discussed.
Technical Paper

A Study on Adaptability of Alternative Fuels for Lean Burn Two-Stroke ATAC Engine

1997-10-27
978472
ATAC is “bulk-like” and/or “non-propagating” combustion caused by compression autoignition of premixture, and it is stable even in the lean region. And ATAC engine is expected to be an engine using alternative fuels which are difficult to apply to usual engines because of their low cetane number. In this study, a two-stroke ATAC engine test was carried out to evaluate an adaptability of alternative fuels for lean burn. Methanol, ethanol, DME, methane and propane were used as the test fuels, and the influence of fuel characteristics on autoignition timing, combustion duration and autoignition temperature were investigated in the lean region. Using oxygenated fuels, the lean limit of ATAC operation region shifts to lean side. ATAC autoignition temperature is not depend on equivalence ratio, delivery ratio and engine speed, and it is only decided by the kind of fuel. The order of the ATAC autoignition temperature is methanol, ethanol, DME, gasoline from lower side.
Technical Paper

Effects of High-Pressure Fuel Injection and a Micro-Hole Nozzle on Combustion in a Rapid Compression Machine

1997-02-24
970893
High pressure fuel injection and a micro-hole nozzle were used with a rapid compression machine to study soot and nitrogen oxide reduction by creating a uniform and lean fuel distribution in the combustion chamber. The rapid compression machine was optically accessible, which allowed high-speed photography and subsequent two-color flame temperature and soot concentration measurements to be made. In addition, band spectrum radical luminescence images were also observed.
Technical Paper

Combustion Analysis of Methanol-Fueled Active Thermo-Atmosphere Combustion (ATAC) Engine Using a Spectroscopic Observation

1994-03-01
940684
To analyze the combustion mechanism of the so-called Active Thermo-Atmosphere Combustion (ATAC) in a two-stroke S.I. engine, a measuring system to obtain images of radical luminescence in the combustion chamber was developed. The ATAC engine tested was equipped with a quartz windows as the cylinder head. The instantaneous luminescence from radical species was observed using an image intensifier with a single band pass filter for both conventional and ATAC operating conditions. At ATAC operation, emissions from OH radicals were observed before heat release began, and after that, emissions from CH were observed. It was found that the ignition was initiated over the entire area of the combustion chamber and “bulk-like” and/or “non propagating” combustion occurred during ATAC engine operation.
Technical Paper

Surrounding Gas Effects on Soot Formation and Extinction - Observation of Diesel Spray Combustion Using a Rapid Compression Machine

1993-03-01
930603
A single action rapid compression machine was developed to observe the soot formation and oxidation processes in a diesel spray flame. Two color method was applied to analyze the flame temperature and KL factor from the flame image taken by high speed camera. Variation in gas oxygen concentration of the surrounding gas was achieved by adding different quantities of pure oxygen, nitrogen, carbon dioxide and argon gases to charged air within a range from 17 to 25 vol.% oxygen to examine the effects of the surrounding gas composition and the temperature, and of the flame temperature on soot formation and extinction. The initial gas temperature has much effect not only on the ignition but on soot formation speed. The higher oxygen concentration gives the higher flame temperature and the faster soot oxidation rate in the flame. Carbon dioxide has a soot reduction effect in spite of its lower flame temperature.
Technical Paper

Experimental Study of Transient Gas Jet Impinging on a Wall

1990-02-01
900479
The process of forming mixtures of injected fuels and ambient air has significant effects on the ignition and combustion process in the direct injection engine. In these engines fuel is injected intermittently and fuel jet impinges on a combustion chamber wall. This study deals with a fundamental experiment on the mixing process of the transient gas jet together with the instantaneous concentration measurement and statistical analysis of the transient turbulent mixing process in the jet. Helium or carbon dioxide is injected at constant pressure into quiescent atmosphere through the single shot device. This paper presents a laboratory automation system for measuring the characteristics of transient gas jet and processing the data. A discussion on the process of mixture formation of transient gas jets impinging on a wall is carried out with time- and space- resolved concentration distribution.
Technical Paper

Effects of Intake Oxygen Concentration on the Characteristics of Particulate Emissions from a D.I. Diesel Engine

1986-09-01
861233
The concept of oxygen enriched charging (OEC) was exploratively examined as a means of reducing particulate emissions from a direct injection (DI) diesel engine. A single cylinder DI engine was operated with intake gas oxygen concentrations of 21% to 29%, under a constant engine speed of 40 Hz, and several load conditions. It was found that OEC reduces particulate emissions from a DI diesel engine for all operating conditions tested. Insoluble particulate is especially suppressed by OEC at high load conditions. Oxygen enriched charging has little effect on particulate size distribution at high loads when the mass fraction of extractables is low. Fuel consumption, at constant injection timing, is improved a little by OEC. Emissions of NOx increase exponentially with increasing oxygen concentration. Ignition delay is decreased by OEC and this allows injection timing to be retarded to reduce NOx emissions without increasing the specific fuel consumption.
X